Docs
Configuration
Project

Project Definition

Project Name and Description

Describing and naming your project is essential for version tracking, .

Setup

Project description and core documentation. image

Project assets that are used to create a module. image

Importing modules as projects. image

Properties

Settings

Here’s a snapshot of what a comprehensive project configuration might look like, including many of the options and features to be discussed.

{
    "project_collections": [
        {
            "database": "master",
            "collection": "bank_customer"
        },
        {
            "database": "master",
            "collection": "bank_transactions"
        },
        {
            "database": "master",
            "collection": "bank_transactions_personality"
        },
        {
            "database": "master",
            "collection": "bank_transactions_personality_bydate"
        },
        {
            "database": "master",
            "collection": "bank_transactions_personality_options"
        },
        {
            "database": "master",
            "collection": "bank_transactions_money"
        },
        {
            "database": "master",
            "collection": "spend_personality__network"
        },
        {
            "database": "master",
            "collection": "spend_personality__network_config"
        },
        {
            "database": "master",
            "collection": "spend_personality__network_selector"
        },
        {
            "database": "master",
            "collection": "spend_personality__network_selector_options"
        },
        {
            "database": "master",
            "collection": "bank_transactions_reliability"
        }
    ],
    "project_files": [
        {
            "name": "bank_transactions.csv",
            "absolutePath": "/data/bank_transactions.csv",
            "lastModified": 1711192602491,
            "size": 121.429,
            "canRead": true,
            "isDirectory": false
        },
        {
            "name": "bank_customer.csv",
            "absolutePath": "/data/bank_customer.csv",
            "lastModified": 1711192601868,
            "size": 0.18,
            "canRead": true,
            "isDirectory": false
        },
        {
            "name": "spend_personality.txt",
            "absolutePath": "/data/spend_personality.txt"
        },
        {
            "name": "money_personality.txt",
            "absolutePath": "/data/money_personality.txt"
        },
        {
            "name": "config",
            "date": "2024-04-28",
            "absolutePath": "/data/config"
        },
        {
            "name": "bank_customer__list.csv",
            "date": "2024-04-28",
            "absolutePath": "/data/bank_customer__list.csv"
        }
    ],
    "project_networks": [
        {
            "date": "2023-06-15",
            "uuid": "ab823cdf-9ddd-404a-90f8-19d5fe68639c",
            "description": "bank_customer"
        },
        {
            "date": "2024-03-19",
            "uuid": "0acb461e-ceb6-45fc-b097-719ce415a5a1",
            "description": "bank_transactions"
        }
    ],
    "purpose": "intervention",
    "configuration": "\"Spend personality\" refers to the characterization of an individual's spending habits based on their bank transactions. This type of analysis, leveraging AI and Machine Learning, provides valuable insights into customer behavior, preferences, and spending patterns over time. By analyzing the frequency, amount, and type of purchases, a bank can categorize their customers into different spending personality types. \n\nFor \"Money Personality\" analyzing customer transaction patterns against profiles, banks can better understand their customers’ money habits and financial management strategies. This can then drive personalized product recommendations, improve customer engagement, and help in more effectively managing financial risks.\n\nFor example, some customers may be identified as big spenders, frequent shoppers, savers, or even impulse buyers based on their demonstrated spending behaviors. These spending personalities can then be utilized for developing personalized marketing strategies, providing tailored financial advice, or enhancing customer service. It can help banks understand their customers better, predict their needs, and build stronger, more profitable relationships with them.\n\nProcess spending personality using Feature Engineering enrichment option:\n1. Use customer transaction data and perform category enrichment.\n2. Then run Ecosystem Spending Personality to generate new collections with scores assigned to customers.\n3. API returns scores per customer.\n\nNotes on 0.09.3:\n1. Network selector configured to allow for different usage options.\n2. Updated Text to SQL engine.\n3. Updates across all configurations for consistency.",
    "project_notebooks": [
        {
            "name": "Spend Personality 0.09",
            "date": "2024-04-15"
        }
    ],
    "project_calendars": [
        {
            "name": "master",
            "date": "NA"
        }
    ],
    "project_data_wizards": [
        {
            "title": "Spend Personality",
            "date": "NA"
        }
    ],
    "project_predictors": [
        {
            "date": "2024-03-20",
            "predict_id": "bank_customer__personality_auto"
        },
        {
            "date": "2024-03-23",
            "predict_id": "bank_transactions__personality_auto"
        }
    ],
    "userid": "ecosystem",
    "uuid": "20bdf5c6-be30-4fdd-8c43-4ec1663e6571",
    "project_end_date": "2026-05-02",
    "undefined": [
        {
            "name": "Spend Personality 0.09.1",
            "date": "2024-04-15"
        }
    ],
    "project_cpr_client_analytics": [
        {
            "name": "spend_personality_590",
            "date": "2024-04-16"
        }
    ],
    "project_id": "Spend Personality 0.09.4",
    "project_owner": "ecosystem",
    "presto_connections": [
        {
            "name": "Postgres-bank_transactions-select",
            "date": "2024-03-30"
        },
        {
            "name": "Postgres-bank_transactions",
            "date": "2024-03-30"
        },
        {
            "name": "Postgres-bank_transactions-drop",
            "date": "2024-03-30"
        }
    ],
    "project_models": [
        {
            "parameters[21].actual_value": "---",
            "output.validation_metrics.model_category": "Multinomial",
            "output.validation_metrics.logloss": 0.4969054048712993,
            "output.validation_metrics.RMSE": 0.3961064072904806,
            "response_column_name": "personality",
            "output.validation_metrics.mean_per_class_error": 0.4,
            "output.end_time": 1710851747225,
            "model_id.name": "GLM_1_AutoML_2_20240319_123546",
            "output.validation_metrics.MSE": 0.15690028589657207,
            "data_frame.name": "AutoML_2_20240319_123546_training_bank_customer0_8.hex",
            "output.model_summary.data[3][0]": "Ridge ( lambda = 0.01456 )",
            "algo": "glm",
            "parameters[22].actual_value": "---",
            "output.validation_metrics.r2": 0.04324034294718049
        },
        {
            "parameters[21].actual_value": 20,
            "output.validation_metrics.model_category": "Multinomial",
            "output.validation_metrics.logloss": 0.5139734681851796,
            "output.validation_metrics.RMSE": 0.4038291760955808,
            "response_column_name": "personality",
            "output.validation_metrics.mean_per_class_error": 0.3984280701754386,
            "output.end_time": 1710851749153,
            "model_id.name": "XRT_1_AutoML_2_20240319_123546",
            "output.validation_metrics.MSE": 0.16307800346603557,
            "data_frame.name": "AutoML_2_20240319_123546_training_bank_customer0_8.hex",
            "output.model_summary.data[3][0]": 163134,
            "algo": "drf",
            "parameters[22].actual_value": 1,
            "output.validation_metrics.r2": 0.0055693412064614645
        },
        {
            "parameters[21].actual_value": 15,
            "output.validation_metrics.model_category": "Multinomial",
            "output.validation_metrics.logloss": 0.00504091424119842,
            "output.validation_metrics.RMSE": 0.03350626288016139,
            "response_column_name": "personality_description",
            "output.validation_metrics.mean_per_class_error": 0.0012288059914334056,
            "output.end_time": 1711196621263,
            "model_id.name": "GBM_1_AutoML_1_20240323_121956",
            "output.validation_metrics.MSE": 0.001122669652194481,
            "data_frame.name": "AutoML_1_20240323_121956_training_bank_transactions__enriched.hex",
            "output.model_summary.data[3][0]": 1591898,
            "algo": "gbm",
            "parameters[22].actual_value": 100,
            "output.validation_metrics.r2": 0.9987902818019092
        },
        {
            "parameters[21].actual_value": true,
            "output.validation_metrics.model_category": "Multinomial",
            "output.validation_metrics.logloss": 0.5281917248961325,
            "output.validation_metrics.RMSE": 0.4061316271799821,
            "response_column_name": "personality",
            "output.validation_metrics.mean_per_class_error": 0.39896140350877196,
            "output.end_time": 1710851749497,
            "model_id.name": "DeepLearning_1_AutoML_2_20240319_123546",
            "output.validation_metrics.MSE": 0.16494289859585998,
            "data_frame.name": "AutoML_2_20240319_123546_training_bank_customer0_8.hex",
            "output.model_summary.data[3][0]": "Input",
            "algo": "deeplearning",
            "parameters[22].actual_value": true,
            "output.validation_metrics.r2": -0.005802571946242674
        },
        {
            "parameters[21].actual_value": 20,
            "output.validation_metrics.model_category": "Multinomial",
            "output.validation_metrics.logloss": 0.54451602038775,
            "output.validation_metrics.RMSE": 0.4116196202612879,
            "response_column_name": "personality",
            "output.validation_metrics.mean_per_class_error": 0.3879578947368421,
            "output.end_time": 1710851747910,
            "model_id.name": "DRF_1_AutoML_2_20240319_123546",
            "output.validation_metrics.MSE": 0.16943071178404687,
            "data_frame.name": "AutoML_2_20240319_123546_training_bank_customer0_8.hex",
            "output.model_summary.data[3][0]": 394707,
            "algo": "drf",
            "parameters[22].actual_value": 1,
            "output.validation_metrics.r2": -0.033168733724158406
        },
        {
            "parameters[21].actual_value": 16,
            "output.validation_metrics.model_category": "Multinomial",
            "output.validation_metrics.logloss": 0.509847958643211,
            "output.validation_metrics.RMSE": 0.40153470072547653,
            "response_column_name": "personality",
            "output.validation_metrics.mean_per_class_error": 0.3989894736842105,
            "output.end_time": 1710851749737,
            "model_id.name": "GBM_grid_1_AutoML_2_20240319_123546_model_1",
            "output.validation_metrics.MSE": 0.16123011588669803,
            "data_frame.name": "AutoML_2_20240319_123546_training_bank_customer0_8.hex",
            "output.model_summary.data[3][0]": 87275,
            "algo": "gbm",
            "parameters[22].actual_value": 100,
            "output.validation_metrics.r2": 0.016837544298485163
        }
    ],
    "project_start_date": "2024-05-02",
    "module_metadata": {
        "reviewed_by": "ecosystem.Ai",
        "image_path": "https://ecosystem.ai/wp-content/uploads/2022/05/ecosystem_black-transparent.png",
        "icon_path": "https://ecosystem.ai/wp-content/uploads/2022/05/ecosystem_black-transparent.png",
        "name": "Spend_Personality_0.09.4",
        "module_owner": "ecosystem.Ai",
        "description": "\"Spend personality\" refers to the characterization of an individual's spending habits based on their bank transactions. This type of analysis, leveraging AI and Machine Learning, provides valuable insights into customer behavior, preferences, and spending patterns over time. By analyzing the frequency, amount, and type of purchases, a bank can categorize their customers into different spending personality types. \n\nFor \"Money Personality\" analyzing customer transaction patterns against profiles, banks can better understand their customers’ money habits and financial management strategies. This can then drive personalized product recommendations, improve customer engagement, and help in more effectively managing financial risks.\n\nFor example, some customers may be identified as big spenders, frequent shoppers, savers, or even impulse buyers based on their demonstrated spending behaviors. These spending personalities can then be utilized for developing personalized marketing strategies, providing tailored financial advice, or enhancing customer service. It can help banks understand their customers better, predict their needs, and build stronger, more profitable relationships with them.\n\nProcess spending personality using Feature Engineering enrichment option:\n1. Use customer transaction data and perform category enrichment.\n2. Then run Ecosystem Spending Personality to generate new collections with scores assigned to customers.\n3. API returns scores per customer.",
        "categories": "banking, personality, spend, spending, money, transactions",
        "created_by": "ecosystem.Ai",
        "version": "0.09.4",
        "fact_sheet_path": "https://ecosystem.ai/modules",
        "contact_email": "amy@ecosystem.ai",
        "status": "released"
    },
    "project_type": "predict",
    "deployment_step": [
        {
            "budget_tracker": {
                "budget_parameters_database": "",
                "budget_parameters_datasource": "mongodb",
                "budget_id": "",
                "description": "",
                "budget_parameters_table_collection": "",
                "x_axis_datasource": "offer_matrix",
                "x_axis_name": "",
                "acc_namesource": "",
                "y_axis_name": "",
                "y_axis_namesource": "",
                "acc_name": "",
                "budget_strategy": "",
                "x_axis_namesource": "",
                "acc_datasource": "offer_matrix",
                "y_axis_datasource": "offer_matrix"
            },
            "date": "2024-04-08",
            "complexity": "medium",
            "plugins": {
                "post_score_class_text": "PostScoreBasic.java",
                "post_score_class_code": "",
                "api_endpoint_code": "",
                "pre_score_class_text": "",
                "pre_score_class_code": ""
            },
            "model_configuration": {
                "model_note": "",
                "models_load": "GBM_1_AutoML_1_20240323_121956.zip",
                "model_outline": "predict"
            },
            "setup_offer_matrix": {
                "offer_lookup_id": "",
                "database": "",
                "table_collection": "",
                "datasource": "mongodb"
            },
            "project_status": "experiment",
            "description": "Model driven personality detection: (http://ecosystem-runtime2:8092)",
            "multi_armed_bandit": {
                "epsilon": "",
                "duration": 0,
                "pulse_responder_uuid": ""
            },
            "whitelist": {
                "table_collection": "",
                "datasource": "mongodb",
                "database": ""
            },
            "version": "0.1",
            "model_selector": {
                "selector_column": "",
                "lookup": "",
                "database": "",
                "selector": "",
                "table_collection": "",
                "datasource": "mongodb"
            },
            "performance_expectation": "high",
            "pattern_selector": {
                "pattern": "",
                "duration": ""
            },
            "paths": {
                "logging_collection_response": "ecosystemruntime_response",
                "logging_collection": "ecosystemruntime",
                "logging_database": "logging",
                "mongo_server_port": "ecosystem-server:54445",
                "scoring_engine_path_prod": "http://ecosystem-runtime3:8091",
                "models_path": "/data/deployed/",
                "mongo_connect": "mongodb://ecosystem_user:EcoEco321@ecosystem-server:54445/?authSource=admin",
                "data_path": "/data/",
                "build_server_path": "http://ecosystem:EcoEco321@build.ecosystem.ai:8080/job/ecosystem-runtime/buildWithParameters?token=114a827a8ada36685a1f3958a6059cd677&BRANCH=spendpersonality&EMAIL=user@ecosystem.ai&CONTAINER_NAME=ecosystem-runtime-spendpersonality",
                "scoring_engine_path_dev": "http://ecosystem-runtime2:8092",
                "aws_container_resource": "",
                "scoring_engine_path_test": "http://ecosystem-runtime2:8091",
                "git_repo_path_branch": "spendpersonality",
                "download_path": "https://hub.docker.com/u/ecosystemai",
                "mongo_ecosystem_password": "EcoEco321",
                "mongo_ecosystem_user": "ecosystem_user",
                "git_repo_path": "https://github.com/ecosystemai/ecosystem-runtime.git"
            },
            "updated_by": "admin@ecosystem.ai",
            "options": {
                "is_offer_matrix": false,
                "is_multi_armed_bandit": false,
                "is_enable_plugins": true,
                "is_whitelist": false,
                "is_corpora": false,
                "is_custom_api": false,
                "is_budget_tracking": false,
                "is_params_from_data_source": true,
                "is_model_selector": false,
                "is_generate_dashboards": false,
                "is_pattern_selector": false,
                "is_prediction_model": true
            },
            "corpora": {
                "corpora": ""
            },
            "parameter_access": {
                "lookup": {
                    "value": 123,
                    "key": "customer"
                },
                "create_virtual_variables": false,
                "database": "master",
                "datasource": "mongodb",
                "lookup_fields": [
                    "age",
                    "education",
                    "gender",
                    "language",
                    "maritalStatus",
                    "numberOfAddresses",
                    "numberOfChildren",
                    "numberOfProducts",
                    "proprtyOwnership"
                ],
                "lookup_defaults": "",
                "virtual_variables": [],
                "table_collection": "bank_customer",
                "fields": "proprtyOwnership,numberOfChildren,maritalStatus,language,numberOfProducts,age,numberOfAddresses,education,gender"
            },
            "updated_date": "2024-06-10T13:19:34.099Z",
            "deployment_id": "spend_personality_model"
        },
        {
            "budget_tracker": {
                "budget_parameters_database": "",
                "budget_parameters_datasource": "mongodb",
                "budget_id": "",
                "description": "",
                "budget_parameters_table_collection": "",
                "x_axis_datasource": "offer_matrix",
                "x_axis_name": "",
                "acc_namesource": "",
                "y_axis_name": "",
                "y_axis_namesource": "",
                "acc_name": "",
                "budget_strategy": "",
                "x_axis_namesource": "",
                "acc_datasource": "offer_matrix",
                "y_axis_datasource": "offer_matrix"
            },
            "date": "2024-04-15",
            "complexity": "low",
            "plugins": {
                "post_score_class_text": "PostScoreMoneyPersonality.java",
                "post_score_class_code": "",
                "api_endpoint_code": "",
                "pre_score_class_text": "",
                "pre_score_class_code": ""
            },
            "model_configuration": {},
            "setup_offer_matrix": {
                "offer_lookup_id": "",
                "database": "",
                "table_collection": "",
                "datasource": "mongodb"
            },
            "project_status": "experiment",
            "description": "Money personality detection.",
            "multi_armed_bandit": {
                "epsilon": "",
                "duration": 0,
                "pulse_responder_uuid": ""
            },
            "whitelist": {
                "table_collection": "",
                "datasource": "mongodb",
                "database": ""
            },
            "version": "0.04",
            "model_selector": {
                "selector_column": "",
                "lookup": "",
                "database": "",
                "selector": "",
                "table_collection": "",
                "datasource": "mongodb"
            },
            "performance_expectation": "high",
            "pattern_selector": {
                "pattern": "",
                "duration": ""
            },
            "paths": {
                "logging_collection_response": "ecosystemruntime_response",
                "logging_collection": "ecosystemruntime",
                "logging_database": "logging",
                "mongo_server_port": "ecosystem-server:54445",
                "scoring_engine_path_prod": "http://ecosystem-runtime3:8091",
                "models_path": "/data/deployed/",
                "mongo_connect": "mongodb://ecosystem_user:EcoEco321@ecosystem-server:54445/?authSource=admin",
                "data_path": "/data/",
                "build_server_path": "http://ecosystem:EcoEco321@build.ecosystem.ai:8080/job/ecosystem-runtime/buildWithParameters?token=114a827a8ada36685a1f3958a6059cd677&BRANCH=spendpersonality&EMAIL=user@ecosystem.ai&CONTAINER_NAME=ecosystem-runtime-spendpersonality",
                "scoring_engine_path_dev": "http://ecosystem-runtime2:8092",
                "aws_container_resource": "",
                "scoring_engine_path_test": "http://ecosystem-runtime2:8091",
                "git_repo_path_branch": "spendpersonality",
                "download_path": "https://hub.docker.com/u/ecosystemai",
                "mongo_ecosystem_password": "EcoEco321",
                "mongo_ecosystem_user": "ecosystem_user",
                "git_repo_path": "https://github.com/ecosystemai/ecosystem-runtime.git"
            },
            "updated_by": "admin@ecosystem.ai",
            "options": {
                "is_offer_matrix": false,
                "is_multi_armed_bandit": false,
                "is_enable_plugins": true,
                "is_whitelist": false,
                "is_corpora": false,
                "is_custom_api": false,
                "is_budget_tracking": false,
                "is_params_from_data_source": true,
                "is_model_selector": false,
                "is_generate_dashboards": false,
                "is_pattern_selector": false,
                "is_prediction_model": false
            },
            "corpora": {
                "corpora": ""
            },
            "parameter_access": {
                "lookup": {
                    "value": 123,
                    "key": "customer"
                },
                "create_virtual_variables": false,
                "database": "master",
                "datasource": "mongodb",
                "lookup_fields": [
                    "adventurer",
                    "adventurous",
                    "borrower",
                    "carefree",
                    "cautious",
                    "conservative",
                    "customer",
                    "indulger",
                    "item",
                    "personality",
                    "personality_score",
                    "prudent",
                    "total_spend",
                    "trait"
                ],
                "lookup_defaults": "",
                "virtual_variables": [],
                "table_collection": "bank_transactions_money",
                "fields": "customer,total_spend,conservative,indulger,adventurer,borrower,cautious,carefree,personality,personality_score,prudent,adventurous,trait,item"
            },
            "updated_date": "2024-06-10T10:51:57.726Z",
            "deployment_id": "money_personality"
        },
        {
            "budget_tracker": {
                "budget_parameters_database": "",
                "budget_parameters_datasource": "mongodb",
                "budget_id": "",
                "description": "",
                "budget_parameters_table_collection": "",
                "x_axis_datasource": "offer_matrix",
                "x_axis_name": "",
                "acc_namesource": "",
                "y_axis_name": "",
                "y_axis_namesource": "",
                "acc_name": "",
                "budget_strategy": "",
                "x_axis_namesource": "",
                "acc_datasource": "offer_matrix",
                "y_axis_datasource": "offer_matrix"
            },
            "date": "2024-04-01",
            "complexity": "medium",
            "plugins": {
                "post_score_class_text": "PlatformDynamicEngagement.java",
                "post_score_class_code": "",
                "api_endpoint_code": "",
                "pre_score_class_text": "",
                "pre_score_class_code": ""
            },
            "model_configuration": {},
            "setup_offer_matrix": {
                "offer_lookup_id": "",
                "database": "",
                "table_collection": "",
                "datasource": "mongodb"
            },
            "project_status": "experiment",
            "description": "Dynamic personality based on base behaviors: (http://ecosystem-runtime3:8093)",
            "multi_armed_bandit": {
                "epsilon": "0.20",
                "duration": 0,
                "pulse_responder_uuid": "2a4c537a-6e76-4383-aa4d-d7644e62fcfe"
            },
            "whitelist": {
                "table_collection": "",
                "datasource": "mongodb",
                "database": ""
            },
            "version": "0.2",
            "model_selector": {
                "selector_column": "",
                "lookup": "",
                "database": "",
                "selector": "",
                "table_collection": "",
                "datasource": "mongodb"
            },
            "performance_expectation": "high",
            "pattern_selector": {
                "pattern": "",
                "duration": ""
            },
            "paths": {
                "logging_collection_response": "ecosystemruntime_response",
                "logging_collection": "ecosystemruntime",
                "logging_database": "logging",
                "mongo_server_port": "ecosystem-server:54445",
                "scoring_engine_path_prod": "http://ecosystem-runtime3:8093",
                "models_path": "/data/deployed/",
                "mongo_connect": "mongodb://ecosystem_user:EcoEco321@ecosystem-server:54445/?authSource=admin",
                "data_path": "/data/",
                "build_server_path": "http://ecosystem:EcoEco321@build.ecosystem.ai:8080/job/ecosystem-runtime/buildWithParameters?token=114a827a8ada36685a1f3958a6059cd677&BRANCH=spendpersonality&EMAIL=user@ecosystem.ai&CONTAINER_NAME=ecosystem-runtime-spendpersonality",
                "scoring_engine_path_dev": "http://ecosystem-runtime3:8093",
                "aws_container_resource": "",
                "scoring_engine_path_test": "http://ecosystem-runtime3:8093",
                "git_repo_path_branch": "spendpersonality",
                "download_path": "https://hub.docker.com/u/ecosystemai",
                "mongo_ecosystem_password": "EcoEco321",
                "mongo_ecosystem_user": "ecosystem_user",
                "git_repo_path": "https://github.com/ecosystemai/ecosystem-runtime.git"
            },
            "updated_by": "admin@ecosystem.ai",
            "options": {
                "is_offer_matrix": false,
                "is_multi_armed_bandit": true,
                "is_enable_plugins": true,
                "is_whitelist": false,
                "is_corpora": false,
                "is_custom_api": false,
                "is_budget_tracking": false,
                "is_params_from_data_source": true,
                "is_model_selector": false,
                "is_generate_dashboards": false,
                "is_pattern_selector": false,
                "is_prediction_model": false
            },
            "corpora": {
                "corpora": ""
            },
            "parameter_access": {
                "lookup": {
                    "value": 123,
                    "key": "customer"
                },
                "create_virtual_variables": false,
                "database": "master",
                "datasource": "mongodb",
                "lookup_fields": [
                    "Extrovert",
                    "Introvert",
                    "segment_enum"
                ],
                "lookup_defaults": "{proprtyOwnership:1,numberOfChildren:1,maritalStatus:1,numberOfProducts:1,age:1,education:1,language:1}",
                "virtual_variables": [],
                "table_collection": "bank_customer",
                "fields": "proprtyOwnership,numberOfChildren,maritalStatus,language,numberOfProducts,region,age,numberOfAddresses,education,gender,changeIndicatorThree,changeIndicatorSix,customer,segment_enum,segment,Extrovert,Introvert,personality,regiojn"
            },
            "updated_date": "2024-06-11T08:28:34.811Z",
            "deployment_id": "spend_personality_dynamic"
        },
        {
            "budget_tracker": {
                "budget_parameters_database": "",
                "budget_parameters_datasource": "mongodb",
                "budget_id": "",
                "description": "",
                "budget_parameters_table_collection": "",
                "x_axis_datasource": "offer_matrix",
                "x_axis_name": "",
                "acc_namesource": "",
                "y_axis_name": "",
                "y_axis_namesource": "",
                "acc_name": "",
                "budget_strategy": "",
                "x_axis_namesource": "",
                "acc_datasource": "offer_matrix",
                "y_axis_datasource": "offer_matrix"
            },
            "date": "2024-04-15",
            "complexity": "low",
            "plugins": {
                "post_score_class_text": "PostScoreSpendingPersonality.java",
                "post_score_class_code": "",
                "api_endpoint_code": "",
                "pre_score_class_text": "",
                "pre_score_class_code": ""
            },
            "model_configuration": {},
            "setup_offer_matrix": {
                "offer_lookup_id": "",
                "database": "",
                "table_collection": "",
                "datasource": "mongodb"
            },
            "project_status": "experiment",
            "description": "Determine spend personality for customer: (http://ecosystem-runtime4:8094)",
            "multi_armed_bandit": {
                "epsilon": "",
                "duration": 0,
                "pulse_responder_uuid": ""
            },
            "whitelist": {
                "table_collection": "",
                "datasource": "mongodb",
                "database": ""
            },
            "version": "0.04",
            "model_selector": {
                "selector_column": "",
                "lookup": "",
                "database": "",
                "selector": "",
                "table_collection": "",
                "datasource": "mongodb"
            },
            "performance_expectation": "high",
            "pattern_selector": {
                "pattern": "",
                "duration": ""
            },
            "paths": {
                "logging_collection_response": "ecosystemruntime_response",
                "logging_collection": "ecosystemruntime",
                "logging_database": "logging",
                "mongo_server_port": "ecosystem-server:54445",
                "scoring_engine_path_prod": "http://ecosystem-runtime3:8091",
                "models_path": "/data/deployed/",
                "mongo_connect": "mongodb://ecosystem_user:EcoEco321@ecosystem-server:54445/?authSource=admin",
                "data_path": "/data/",
                "build_server_path": "http://ecosystem:EcoEco321@build.ecosystem.ai:8080/job/ecosystem-runtime/buildWithParameters?token=114a827a8ada36685a1f3958a6059cd677&BRANCH=spendpersonality0.08&EMAIL=user@ecosystem.ai&CONTAINER_NAME=ecosystem-runtime-spendpersonality0.08",
                "scoring_engine_path_dev": "http://ecosystem-runtime4:8094",
                "aws_container_resource": "",
                "scoring_engine_path_test": "http://ecosystem-runtime2:8091",
                "git_repo_path_branch": "spendpersonality0.08",
                "download_path": "https://hub.docker.com/u/ecosystemai",
                "mongo_ecosystem_password": "EcoEco321",
                "mongo_ecosystem_user": "ecosystem_user",
                "git_repo_path": "https://github.com/ecosystemai/ecosystem-runtime.git"
            },
            "updated_by": "admin@ecosystem.ai",
            "options": {
                "is_offer_matrix": false,
                "is_multi_armed_bandit": false,
                "is_enable_plugins": true,
                "is_whitelist": false,
                "is_corpora": false,
                "is_custom_api": false,
                "is_budget_tracking": false,
                "is_params_from_data_source": true,
                "is_model_selector": false,
                "is_generate_dashboards": false,
                "is_pattern_selector": false,
                "is_prediction_model": false
            },
            "corpora": {
                "corpora": ""
            },
            "parameter_access": {
                "create_virtual_variables": false,
                "lookup": {
                    "value": 123,
                    "key": "customer"
                },
                "database": "master",
                "datasource": "mongodb",
                "lookup_fields": [
                    "Enthusiastic",
                    "Experiential",
                    "Extrovert",
                    "Industrious",
                    "Intentional",
                    "Introvert",
                    "count",
                    "customer",
                    "item",
                    "personality",
                    "personality_score",
                    "trait",
                    "trait_score"
                ],
                "lookup_defaults": "",
                "virtual_variables": [],
                "table_collection": "bank_transactions_personality",
                "fields": "count,customer,Industrious,Intentional,Experiential,Enthusiastic,personality_score,personality,Extrovert,Introvert,trait_score,trait,item"
            },
            "updated_date": "2024-06-12T13:12:18.917Z",
            "deployment_id": "spend_personality"
        },
        {
            "budget_tracker": {
                "budget_parameters_database": "",
                "budget_parameters_datasource": "mongodb",
                "budget_id": "",
                "description": "",
                "budget_parameters_table_collection": "",
                "x_axis_datasource": "offer_matrix",
                "x_axis_name": "",
                "acc_namesource": "",
                "y_axis_name": "",
                "y_axis_namesource": "",
                "acc_name": "",
                "budget_strategy": "",
                "x_axis_namesource": "",
                "acc_datasource": "offer_matrix",
                "y_axis_datasource": "offer_matrix"
            },
            "date": "2024-04-25",
            "complexity": "low",
            "plugins": {
                "post_score_class_text": "PostScoreNetwork.java",
                "post_score_class_code": ""
            },
            "model_configuration": {},
            "setup_offer_matrix": {
                "offer_lookup_id": "",
                "database": "",
                "table_collection": "",
                "datasource": "mongodb"
            },
            "project_status": "experiment",
            "description": "ENTRY: network selector (http://ecosystem-runtime:8091)",
            "multi_armed_bandit": {
                "epsilon": "0.05",
                "duration": 0,
                "pulse_responder_uuid": "1f758163-ee75-46c1-8187-8f6816da244d"
            },
            "whitelist": {
                "table_collection": "",
                "datasource": "mongodb",
                "database": ""
            },
            "version": "0.22",
            "model_selector": {
                "selector_column": "",
                "lookup": "",
                "database": "",
                "selector": "",
                "table_collection": "",
                "datasource": "mongodb"
            },
            "performance_expectation": "high",
            "pattern_selector": {
                "pattern": "",
                "duration": ""
            },
            "paths": {
                "logging_collection_response": "ecosystemruntime_response",
                "logging_collection": "ecosystemruntime",
                "logging_database": "logging",
                "mongo_server_port": "ecosystem-server:54445",
                "scoring_engine_path_prod": "http://ecosystem-runtime3:8091",
                "models_path": "/data/deployed/",
                "mongo_connect": "mongodb://ecosystem_user:EcoEco321@ecosystem-server:54445/?authSource=admin",
                "data_path": "/data/",
                "build_server_path": "http://ecosystem:EcoEco321@build.ecosystem.ai:8080/job/ecosystem-runtime/buildWithParameters?token=114a827a8ada36685a1f3958a6059cd677&BRANCH=spendpersonality0.09.2&EMAIL=user@ecosystem.ai&CONTAINER_NAME=ecosystem-runtime-spendpersonality0.09.2",
                "scoring_engine_path_dev": "http://ecosystem-runtime:8091",
                "aws_container_resource": "",
                "scoring_engine_path_test": "http://ecosystem-runtime2:8091",
                "git_repo_path_branch": "spendpersonality0.09.2",
                "download_path": "https://hub.docker.com/u/ecosystemai",
                "mongo_ecosystem_password": "EcoEco321",
                "mongo_ecosystem_user": "ecosystem_user",
                "git_repo_path": "https://github.com/ecosystemai/ecosystem-runtime.git"
            },
            "updated_by": "admin@ecosystem.ai",
            "options": {
                "is_offer_matrix": false,
                "is_multi_armed_bandit": false,
                "is_enable_plugins": true,
                "is_whitelist": false,
                "is_corpora": true,
                "is_custom_api": false,
                "is_budget_tracking": false,
                "is_params_from_data_source": true,
                "is_model_selector": false,
                "is_generate_dashboards": false,
                "is_pattern_selector": false,
                "is_prediction_model": false
            },
            "corpora": {
                "corpora": "[{name:'network',database:'mongodb',db:'master',table:'spend_personality__network', type:'static', key:'value' },{name:'network_config',database:'mongodb',db:'master',table:'spend_personality__network_config', type:'static', key:'name' }]"
            },
            "parameter_access": {
                "lookup": {
                    "value": 123,
                    "key": "customer"
                },
                "create_virtual_variables": false,
                "database": "master",
                "datasource": "mongodb",
                "lookup_fields": [
                    "Extrovert",
                    "Introvert",
                    "segment_enum"
                ],
                "lookup_defaults": "{personality:1,education:1,gender:1,numberOfProducts:1}",
                "virtual_variables": [],
                "table_collection": "bank_customer",
                "fields": "Extrovert,education,gender,changeIndicatorThree,language,numberOfProducts,changeIndicatorSix,Introvert,numberOfChildren,numberOfAddresses,personality,segment_enum,segment,region,maritalStatus,age,proprtyOwnership,customer,name,address,email,mobile"
            },
            "updated_date": "2024-04-28T16:57:19.560Z",
            "deployment_id": "spend_personality_master"
        },
        {
            "budget_tracker": {
                "budget_parameters_database": "",
                "budget_parameters_datasource": "mongodb",
                "budget_id": "",
                "description": "",
                "budget_parameters_table_collection": "",
                "x_axis_datasource": "offer_matrix",
                "x_axis_name": "",
                "acc_namesource": "",
                "y_axis_name": "",
                "y_axis_namesource": "",
                "acc_name": "",
                "budget_strategy": "",
                "x_axis_namesource": "",
                "acc_datasource": "offer_matrix",
                "y_axis_datasource": "offer_matrix"
            },
            "date": "2024-04-25",
            "complexity": "low",
            "plugins": {
                "post_score_class_text": "PlatformDynamicEngagement.java",
                "post_score_class_code": "",
                "api_endpoint_code": "",
                "pre_score_class_text": "",
                "pre_score_class_code": ""
            },
            "model_configuration": {},
            "setup_offer_matrix": {
                "offer_lookup_id": "",
                "database": "",
                "table_collection": "",
                "datasource": "mongodb"
            },
            "project_status": "experiment",
            "description": "SELECTOR: select model to use (http://ecosystem-runtime5:8095)",
            "multi_armed_bandit": {
                "epsilon": "0.05",
                "duration": 0,
                "pulse_responder_uuid": "1f758163-ee75-46c1-8187-8f6816da244d"
            },
            "whitelist": {
                "table_collection": "",
                "datasource": "mongodb",
                "database": ""
            },
            "version": "0.1",
            "model_selector": {
                "selector_column": "",
                "lookup": "",
                "database": "",
                "selector": "",
                "table_collection": "",
                "datasource": "mongodb"
            },
            "performance_expectation": "high",
            "pattern_selector": {
                "pattern": "",
                "duration": ""
            },
            "paths": {
                "logging_collection_response": "ecosystemruntime_response",
                "logging_collection": "ecosystemruntime",
                "logging_database": "logging",
                "mongo_server_port": "ecosystem-server:54445",
                "scoring_engine_path_prod": "http://ecosystem-runtime5:8095",
                "models_path": "/data/deployed/",
                "mongo_connect": "mongodb://ecosystem_user:EcoEco321@ecosystem-server:54445/?authSource=admin",
                "data_path": "/data/",
                "build_server_path": "http://ecosystem:EcoEco321@build.ecosystem.ai:8080/job/ecosystem-runtime/buildWithParameters?token=114a827a8ada36685a1f3958a6059cd677&BRANCH=spendpersonality0.09.2&EMAIL=user@ecosystem.ai&CONTAINER_NAME=ecosystem-runtime-spendpersonality0.09.2",
                "scoring_engine_path_dev": "http://ecosystem-runtime5:8095",
                "aws_container_resource": "",
                "scoring_engine_path_test": "http://ecosystem-runtime5:8095",
                "git_repo_path_branch": "spendpersonality0.09.2",
                "download_path": "https://hub.docker.com/u/ecosystemai",
                "mongo_ecosystem_password": "EcoEco321",
                "mongo_ecosystem_user": "ecosystem_user",
                "git_repo_path": "https://github.com/ecosystemai/ecosystem-runtime.git"
            },
            "updated_by": "admin@ecosystem.ai",
            "options": {
                "is_offer_matrix": false,
                "is_multi_armed_bandit": true,
                "is_enable_plugins": true,
                "is_whitelist": false,
                "is_corpora": false,
                "is_custom_api": false,
                "is_budget_tracking": false,
                "is_params_from_data_source": true,
                "is_model_selector": false,
                "is_generate_dashboards": false,
                "is_pattern_selector": false,
                "is_prediction_model": false
            },
            "corpora": {
                "corpora": ""
            },
            "parameter_access": {
                "lookup": {
                    "value": 123,
                    "key": "customer"
                },
                "create_virtual_variables": false,
                "database": "master",
                "datasource": "mongodb",
                "lookup_fields": [
                    "Extrovert",
                    "Introvert",
                    "address",
                    "age",
                    "changeIndicatorSix",
                    "changeIndicatorThree",
                    "customer",
                    "education",
                    "email",
                    "gender",
                    "language",
                    "maritalStatus",
                    "mobile",
                    "name",
                    "numberOfAddresses",
                    "numberOfChildren",
                    "numberOfProducts",
                    "personality",
                    "proprtyOwnership",
                    "region",
                    "segment",
                    "segment_enum"
                ],
                "lookup_defaults": "{personality:1}",
                "virtual_variables": [],
                "table_collection": "bank_customer",
                "fields": "Extrovert,education,gender,changeIndicatorThree,language,numberOfProducts,changeIndicatorSix,Introvert,numberOfChildren,numberOfAddresses,personality,segment_enum,segment,region,maritalStatus,age,proprtyOwnership,customer,name,address,email,mobile"
            },
            "updated_date": "2024-04-28T16:57:32.294Z",
            "deployment_id": "spend_personality_selector"
        }
    ],
    "project_data": "ecosystem",
    "project_dashboards": [
        {
            "name": "Customer Banking 005.1",
            "date": "2024-04-25"
        }
    ],
    "project_fact_injection_configs": [
        {
            "name": "bank_customer",
            "date": "2024-03-30",
            "description": "Chat with bank customer personality. Copy all transactions from MongoDB to PostgresQL using Feature Engineering tools. Use query: to see SQL statements. Example chat sequence:\nuse: bank_customer\nHow many customer transactions are there?\nquery: How many customer transactions are there?\nquery: How many female customer own homes?"
        },
        {
            "name": "spend",
            "date": "2024-04-09",
            "description": "Use knowledge to contain the LLM chat performance."
        },
        {
            "name": "customer_chat",
            "date": "2024-04-09",
            "description": "Agent chat about customer spend and money personalities. This config requires that you provide the customer number first and then can ask about the actions that are configured. Example chat sequence:\nuse: customer_chat\nUse number is 851\nObtain the spend personality\nObtain money personality"
        },
        {
            "name": "customer_local",
            "date": "2024-04-30",
            "description": "Use Presto and the ecosystem.Ai text to sql engine."
        }
    ],
    "created_by": "admin@ecosystem.ai",
    "project_api_configs": [
        {
            "name": "spend_personality_selector",
            "date": "2024-04-25"
        },
        {
            "name": "spend_personality_model",
            "date": "2024-04-25"
        },
        {
            "name": "spend_personality_dynamic",
            "date": "2024-04-25"
        },
        {
            "name": "spend_personality_master",
            "date": "2024-04-25"
        }
    ],
    "preview_detail": {
        "summary": "Generic predictors based on banking data.",
        "image": "/data/xyz.png",
        "active": true,
        "detail": "intervention",
        "heading": "Spend Personality"
    },
    "project_dynamic_interactions": [
        {
            "name": "spend_personality_dynamic",
            "date": "2024-04-28"
        },
        {
            "name": "spend_personality_selector",
            "date": "2024-04-28"
        }
    ],
    "project_description": "Extract customer spending and money personalities with Algorithm, Model and Dynamic options using the network selector.",
    "project_simulations": [
        {
            "name": "spend_personality_master",
            "date": "2024-04-28"
        },
        {
            "name": "spend_personality_dynamic",
            "date": "2024-04-28"
        },
        {
            "name": "bank_customer__personality",
            "date": "2024-05-02"
        }
    ],
    "updated_by": "admin@ecosystem.ai",
    "project_cpr_analytics": [
        {
            "name": "spend_personality",
            "date": "2024-04-15"
        },
        {
            "name": "spend_personality_dynamic",
            "date": "2024-04-28"
        }
    ],
    "_id": {
        "date": "Wed Jun 12 13:12:18 UTC 2024",
        "timestamp": 1718197938
    },
    "updated_date": "2024-06-12T13:12:18.000933Z",
    "created_date": "2024-05-02T09:07:30.757Z",
    "userid_login": "ecosystem",
    "feature_stores": [
        {
            "date": "2024-03-19",
            "frame_id": "bank_customer"
        },
        {
            "date": "2024-03-23",
            "frame_id": "bank_transactions"
        }
    ]
}