Product Master Plugin

The Product Master plugin is configure the API settings for the runtime.

How does it work?

The Product Master plugin can be used to configure api endpoints which can be called to interact with the runtime. The two main classes of enpoint that will be configured are those to get predictions and those to store responses based on predictions. The APIs configured to get predictions are set up to populate the params object which is passed through the execution process. The APIs configured to store responses are set up to call the ecosystemResponse.putResponseReturnDetailAsync function which performs the required actions. Examples of both types of API are shown in the code below.

Java Code

The class PlatformDynamicEngagement extends the PostScoreSuper class, which provides functionality that can be used across different post-scoring plugins.

The getPostPredict() method accepts a JSONObject with prediction results, parameters for the scoring operation, a session object for a Cassandra database, and an array of preloaded models. The method then processes the results and prediction parameters, including extracting features, evaluating offer eligibility and constructing an array of modified offer scores.

After processing, the results are sorted based on score and the top scores are retrieved. There is also a time tracking operation which logs the time taken to execute the method.

A Logger object is initialized for logging purposes. Logging can be done at a variety of levels, including ERROR, WARN, INFO and DEBUG. It is recommended to add detailed logging at the DEBUG level to assist with troubleshooting once the plugin is deployed.

The following is the java implementation of the Product Master plugin:

package com.ecosystem.runtime;
 
import com.ecosystem.plugin.business.BusinessLogic;
import com.ecosystem.utils.JSONDecode;
 
import io.swagger.v3.oas.annotations.Operation;
import io.swagger.v3.oas.annotations.enums.SecuritySchemeType;
import io.swagger.v3.oas.annotations.media.Content;
import io.swagger.v3.oas.annotations.media.Schema;
import io.swagger.v3.oas.annotations.responses.ApiResponse;
import io.swagger.v3.oas.annotations.responses.ApiResponses;
import io.swagger.v3.oas.annotations.security.SecurityScheme;
import io.swagger.v3.oas.annotations.tags.Tag;
 
import com.ecosystem.utils.log.LogManager;
import com.ecosystem.utils.log.Logger;
import org.json.JSONObject;
import org.springframework.http.HttpStatus;
import org.springframework.web.bind.annotation.*;
 
import javax.annotation.security.RolesAllowed;
import java.io.IOException;
import java.net.URLDecoder;
import java.text.ParseException;
import java.util.Map;
import java.util.UUID;
 
import static com.ecosystem.utils.GenerateUUID.generateUUID;
 
@CrossOrigin
@RolesAllowed({"ADMIN", "USER"})
@RestController()
@SecurityScheme(type = SecuritySchemeType.APIKEY)
@ApiResponses(value = {
        @ApiResponse(responseCode = "200", description = "Successful",
                content = { @Content(mediaType = "application/json",
                        schema = @Schema(implementation = ProductMaster.class)) }),
        @ApiResponse(responseCode = "400", description = "Error",
                content = @Content),
        @ApiResponse(responseCode = "404", description = "Error",
                content = @Content) })
@Tag(name = "Predictors", description = "Review model domain details, refresh model parameter loading and perform predictions. " +
        "There are two primary approaches to invoking a prediction for scoring via a model namely; Invoke model and return a JSON response that can be used in any application," +
        " invoke model and deliver result onto a KAFKA topic of your choosing. Model can also be tested by dynamically loading a MOJO, mostly used for testing purposes." +
        "The predictor parameters are broken into two types namely, requiring all parameters via API or requiring a lookup key via API and extracting parameters from a data source." +
        "Use this format for input params: \n " +
        "{'name':'predict1', 'mojo':'model_mojo.zip','dbparam':false,'input': ['x','y'],'value': ['val_x', 'val_y']}" +
        "\nUse this approach for inputs from data source:\n" +
        "{'name':'predict1', 'mojo':'model_mojo.zip','dbparam':true, lookup:{key:'customer',value:1234567890}} " +
        "\nIf there is post-scoring logic, then ise this configuration:\n" +
        "{'name':'predict1', 'mojo': '1','mab': {'class':'mabone', 'epsilon':0.4},'dbparam': true, lookup:{key:'customer',value: 1234567890}, param: {key:'value_field', value:30}}\n")
 
public class ProductMaster extends ProductMasterSuper {
 
    private static final Logger LOGGER = LogManager.getLogger(ProductMaster.class.getName());
 
    public ProductMaster() {
        super();
    }
 
    /**
     * Primary Scoring Endpoint for Inference.
     * @param request
     * @return
     * @throws Exception
     */
    @Operation(summary = "Invocation endpoint: {\"campaign\":\"name\",\"subcampaign\":\"none\",\"customer\":\"1111\",\"channel\":\"app\",\"numberoffers\":1,\"userid\":\"test\",\"params\":\"{}\"}")
    @RequestMapping(value = "/invocations", method = RequestMethod.POST)
    public String invoke(@RequestHeader Map<String, String> headers,
                         @RequestBody String request) {
        LOGGER.info("/invocations API");
        JSONObject predictResult = new JSONObject();
 
        try {
            JSONObject inpObj = new JSONObject(request);
 
            /************ Validate and use defaults ***********/
            String campaign = settings.getProjectDeploymentID();
            if (inpObj.has("campaign"))
                campaign = String.valueOf(inpObj.get("campaign"));
 
            String subcampaign = campaign;
            if (inpObj.has("campaign"))
                subcampaign = String.valueOf(inpObj.get("subcampaign"));
 
            String channel = "api";
            if (inpObj.has("channel"))
                channel = String.valueOf(inpObj.get("channel"));
 
            int numberoffers = 1;
            if (inpObj.has("numberoffers"))
                numberoffers = Integer.parseInt(String.valueOf(inpObj.get("numberoffers")));
 
            String userid = "api";
            if (inpObj.has("userid"))
                userid = String.valueOf(inpObj.get("userid"));
 
            String params = "{}";
            if (inpObj.has("params"))
                params = (String) inpObj.get("params");
 
            String customer = "none";
            if (inpObj.has("customer"))
                customer = String.valueOf(inpObj.get("customer"));
 
            JSONObject paramsParams = new JSONObject();
            try {
                String in_params = URLDecoder.decode(params);
                if (in_params.startsWith("\"")) in_params = in_params.substring(1, in_params.length() - 1).replaceAll("\\\\", "");
                paramsParams = new JSONObject(in_params);
            } catch (org.json.JSONException e) {
                LOGGER.info("/offerRecommendations malformed params JSON input: " + params);
                return paramsParams.put("ErrorMessage", e).toString().intern();
            }
 
            /************ Setup values from input params that will be placed in **********/
            JSONObject param = new JSONObject();
            String uuid = generateUUID();
            /** param.put("headers", headers); */
            param.put("uuid", uuid);
            LOGGER.info("/invocations:UUID: " + uuid + " predictor: " + campaign);
 
            param.put("name", campaign);
            param.put("customer", customer);
            param.put("campaign", campaign);
            param.put("subcampaign", subcampaign);
            param.put("channel", channel);
            param.put("subname", subcampaign);
            param.put("resultcount", numberoffers);
            param.put("userid", userid);
            param.put("mojo", "1");
 
            /* this is needed to not cause a stack overflow as adding current value of json object */
            JSONObject inParam = new JSONObject(param.toString());
            param.put("api_params", inParam);
 
            /************ Set defaults for model and paramneters from database ***********/
            param.put("in_params", paramsParams);
            if (paramsParams.has("input")) {
                param.put("input", paramsParams.getJSONArray("input"));
                param.put("value", paramsParams.getJSONArray("value"));
                param.put("lookup", new JSONObject().put("value", customer).put("key", "customer"));
                param.put("dbparam", false);
            } else {
                param.put("dbparam", true);
                param = ValidateParams.getLookupFromParams(settings, param, customer);
            }
 
            /************ Obtain default epsilon from properties or obtain from input params ***********/
            if (!paramsParams.has("mab")) {
                JSONObject mabParam = new JSONObject();
                mabParam.put("class", "mabone");
                mabParam.put("epsilon", settings.getEpsilon());
                param.put("mab", mabParam);
            } else {
                param.put("mab", paramsParams.getJSONObject("mab"));
            }
 
            /**************** Primary prediction from EcosystemMaster.getPredictionResult **************/
            predictResult = ecosystemMaster.getPredictionResult(param);
            if (param.has("in_params")) predictResult.put("in_params", param.getJSONObject("in_params"));
            if (predictResult.has("ErrorMessage")) {
                predictResult.put("error", 1);
            }
            predictResult.remove("predict_result");
 
            String detail = "full";
            if (paramsParams.has("detail"))
                detail = paramsParams.getString("detail");
 
            /**************** Special prediction approaches: Spam **************/
            if (detail.contains("spam") || subcampaign.contains("spam")) {
                JSONObject newResult = new JSONObject();
                newResult.put("uuid", predictResult.getJSONArray("final_result").getJSONObject(0).getJSONObject("result_full").get("uuid"));
                newResult.put("offer", predictResult.getJSONArray("final_result").getJSONObject(0).getJSONObject("result_full").get("offer"));
                newResult.put("ham_confidence", predictResult.getJSONArray("final_result").getJSONObject(0).getJSONObject("result_full").get("ham_confidence"));
                newResult.put("spam_confidence", predictResult.getJSONArray("final_result").getJSONObject(0).getJSONObject("result_full").get("spam_confidence"));
                newResult.put("spam", predictResult.getJSONArray("final_result").getJSONObject(0).getJSONObject("result_full").get("spam"));
                predictResult = newResult;
            }
 
        } catch (Exception e) {
            e.printStackTrace();
            predictResult.put("ErrorMessage", e.getMessage());
        }
        return predictResult.toString();
    }
 
 
    /**
     * Prediction case is determined from properties file setup: mojo's, feature store, and other settings.
     * <p>
     * Recommender Case:
     * From paramsParams - balance enquiry example: {msisdn:0828811817,in_balance:50,voice_balance:12,data_balance:400,n_offers:1}
     * <p>
     * Recommender Case:
     * {'name':'rechargerecommender', 'mojo':'1','mab':{'class':'mabone', 'epsilon':0.4},'dbparam':true, lookup:{key:'msisdn',value:849999330}, param:{key:'in_recharge', value:100}, resultcount:2}
     *
     * @param campaign     campaign
     * @param subcampaign  subcampaign
     * @param customer     customer
     * @param channel      channel
     * @param numberoffers numberoffers
     * @return Result
     */
    @Operation(summary = "Provide offers that form part of a campaign for particular customer. When no feature store is present, use this in params: {'input': ['key1','key2'],'value': ['value1', 'value2']}")
    @RequestMapping(value = "/offerRecommendations",  method = RequestMethod.GET)
    @ResponseStatus(HttpStatus.OK)
    public String getOfferRecommendations(@RequestHeader Map<String, String> headers,
                                          @RequestParam(name = "campaign", defaultValue = "") String campaign,
                                          @RequestParam(name = "subcampaign", defaultValue = "", required = false) String subcampaign,
                                          @RequestParam(name = "customer", defaultValue = "") String customer,
                                          @RequestParam(name = "channel", defaultValue = "") String channel,
                                          @RequestParam(name = "numberoffers", defaultValue = "", required = false) int numberoffers,
                                          @RequestParam(name = "userid", defaultValue = "") String userid,
                                          @RequestParam(name = "params", defaultValue = "", required = false) String jsonParams) throws Exception {
        LOGGER.info("/offerRecommendations API");
 
        JSONObject paramsParams = new JSONObject();
        try {
            String in_params = URLDecoder.decode(jsonParams);
            if (in_params.startsWith("\"")) in_params = in_params.substring(1, in_params.length() - 1).replaceAll("\\\\", "");
            paramsParams = new JSONObject(in_params);
        } catch (org.json.JSONException e) {
            LOGGER.info("/offerRecommendations malformed params JSON input: " + jsonParams);
            return paramsParams.put("ErrorMessage", e).toString();
        }
 
        /* Setup values from input params that will be placed in */
        JSONObject param = new JSONObject();
        String uuid = generateUUID();
        param.put("headers", headers);
        param.put("uuid", uuid);
 
        LOGGER.info("/invocations:UUID: " + uuid + " predictor: " + campaign);
 
        param.put("customer", customer);
        param.put("name", campaign);
        param.put("subcampaign", subcampaign);
        param.put("channel", channel);
        param.put("subname", subcampaign);
        param.put("resultcount", numberoffers);
        param.put("userid", userid);
        /* this is needed to not cause a stack overflow as adding current value of json object */
        JSONObject inParam = new JSONObject(param.toString());
        param.put("api_params", inParam);
 
        /** Set defaults for model and paramneters from database */
        param.put("in_params", paramsParams);
        if (paramsParams.has("input")) {
            param.put("input", paramsParams.getJSONArray("input"));
            param.put("value", paramsParams.getJSONArray("value"));
            param.put("lookup", new JSONObject().put("value", customer).put("key", "customer"));
            param.put("dbparam", false);
        } else {
            param.put("dbparam", true);
            param = ValidateParams.getLookupFromParams(settings, param, customer);
        }
 
        param.put("mojo", "1");
 
        /** Obtain default epsilon from properties or obtain from input params */
        if (!paramsParams.has("mab")) {
            JSONObject mabParam = new JSONObject();
            mabParam.put("class", "mabone");
            mabParam.put("epsilon", settings.getEpsilon());
            param.put("mab", mabParam);
        } else {
            param.put("mab", paramsParams.getJSONObject("mab"));
        }
 
        /** Primary prediction from EcosystemMaster.getPredictionResult */
        JSONObject predictResult = new JSONObject();
        predictResult = ecosystemMaster.getPredictionResult(mongoClient, param);
        if (param.has("in_params")) predictResult.put("in_params", param.getJSONObject("in_params"));
        if (predictResult.has("ErrorMessage")) {
            predictResult.put("error", 1);
        }
 
        predictResult.remove("predict_result");
        return predictResult.toString();
    }
 
    /**
     * Update offers taken up by customers/msisdn
     *
     * @param documentJSON documentJSON
     * @return Result
     */
    @Operation(description = "Update response based on recommendation accepted (Async): " +
            "{\"uuid\": \"dcb54a23-0737-4768-845d-48162598c0f7\", \"offers_accepted\": [{\"offer_name\": \"OFFER_A\"}], \"channel_name\": \"app\"}" +
            "", summary = "Generic prediction scoring endine for recommenders.")
    @RequestMapping(value = "/offerRecommendations",  method = RequestMethod.PUT)
    @ResponseStatus(HttpStatus.OK)
    public String putOfferRecommendations(@RequestHeader Map<String, String> headers,
                                          @RequestParam(name = "document", defaultValue = "") String documentJSON) throws IOException, ParseException {
        LOGGER.info("/offerRecommendations PUT API");
        LOGGER.info(documentJSON);
 
        String response = "Success";
        try {
            ecosystemResponse.putResponseReturnDetailAsync(JSONDecode.decode(documentJSON));
        } catch (Exception e) {
            e.printStackTrace();
            JSONObject error = new JSONObject().put("ErrorMessage", "Validate that uuid is available in log. " + e.getMessage());
            response = error.toString();
        }
        return "{\"message\": \"" + response + "\"}";
    }
 
    /**
     * Update offers taken up by customers/msisdn
     *
     * @param documentJSON documentJSON
     * @return Result
     */
    @Operation(description = "Update response based on recommendation accepted and returns valid result: " +
            "{\"uuid\": \"dcb54a23-0737-4768-845d-48162598c0f7\", \"offers_accepted\": [{\"offer_name\": \"OFFER_A\"}], \"channel_name\": \"app\"}" +
            "", summary = "Generic prediction scoring endine for recommenders.")
    @RequestMapping(value = "/offerRecommendationsResult",  method = RequestMethod.PUT)
    @ResponseStatus(HttpStatus.OK)
    public String putOfferRecommendationsResult(@RequestHeader Map<String, String> headers,
                                                @RequestParam(name = "document", defaultValue = "") String documentJSON) throws IOException, ParseException {
        LOGGER.info("/offerRecommendationsResult PUT API");
        LOGGER.info(documentJSON);
 
        String response;
        try {
            JSONObject responseObj = ecosystemResponse.putResponseReturnDetail(JSONDecode.decode(documentJSON));
            if (responseObj != null)
                response = responseObj.getString("uuid");
            else
                response = "none";
        } catch (Exception e) {
            e.printStackTrace();
            JSONObject error = new JSONObject().put("ErrorMessage", "Validate that uuid is available in log. " + e.getMessage());
            response = error.toString();
        }
        return "{\"message\": \"" + response + "\"}";
    }
 
    /**
     * Score model from pre-loaded mojo as set in the properties file
     *
     * @param valueJSON Example: {'name':'predict1', 'kafka':{'TOPIC_NAME':'ecosystem1','log':'true'},'mojo':'1', 'input':['x','y'], 'value':['val_x','val_y']} OR {'name':'predict1', 'kafka':{'TOPIC_NAME':'ecosystem1','log':'true'}, 'mojo':'1', 'dbparam':true, lookup:{key:'customer',value:'1234567890'} }
     * @param detail    Detail to return: all, basic or none
     * @return Result
     */
    @Operation(description = "Perform prediction on pre-loaded model with detail and push onto Kafka topic: none, basic or all. Perform a database lookup if properties file has been set. " +
            "Example parameter: Example: {'name':'predict1', 'kafka':{'TOPIC_NAME':'ecosystem1','log':'true'},'mojo':'1', 'input':['x','y'], 'value':['val_x','val_y']} OR {'name':'predict1', 'kafka':{'TOPIC_NAME':'ecosystem1','log':'true'}, 'mojo':'1', 'dbparam':true, lookup:{key:'customer',value:'1234567890'} }" +
            "", summary = "Perform prediction on pre-loaded model with detail and push onto Kafka topic")
    @RequestMapping(value = "/predictorResponsePreLoadKafKa", method = RequestMethod.GET)
    @ResponseStatus(HttpStatus.OK)
    public String predictorResponsePreLoadKafKa(
            @RequestHeader Map<String, String> headers,
            @RequestParam(name = "value",
                    defaultValue = "{'name': 'predict1', 'kafka': {'TOPIC_NAME': 'ecosystem1', 'log': 'true'},'mojo': '1', 'input': ['x', 'y'], 'value': ['val_x', 'val_y']} " +
                            "OR {'name': 'predict1', 'kafka': {'TOPIC_NAME': 'ecosystem1','log': 'true'}, 'mojo': '1', 'dbparam': true, lookup: {key: 'customer', value: '1234567890'} }") String valueJSON,
            @RequestParam(name = "detail",
                    defaultValue = "none") String detail) {
        LOGGER.info("/predictorResponsePreLoadKafKa params: " + valueJSON);
        try {
            JSONObject params = new JSONObject(JSONDecode.decode(valueJSON));
            return ecosystemMaster.getPredictionResultToKafka(mongoClient, params);
        } catch (Exception e) {
            LOGGER.error("PredictorMaster:predictorResponsePreLoadKafKa:E000: Param error: " + e);
            return "{\"ErrorMessage\": \"PredictorMaster:predictorResponsePreLoadKafKa:E000-1: Parameter error.\"}";
        }
 
    }
 
    /**
     * Score model from pre-loaded mojo as set in the properties file
     *
     * @param valueJSON Example: {'name':'predict1', 'mojo':'1','dbparam':true, lookup:{key:'customer_id',value:724578004}} OR if parameter is not
     *                  from database use: {'name':'predict1', 'mojo':'1..3','dbparam':false, 'input':['x','y'], 'value':['val_x','val_y']}
     *                  Use x:n to define the number of predictions to return as primary result, if the overall probability is not used.
     *                  Optional 'resultcount':3  if not present in parameter, then return one item
     * @param detail    Detail to return: all, basic or none
     * @return Result
     */
    @Operation(description = "Perform prediction on pre-loaded model with detail: none, basic or all. Perform a database lookup if properties file has been set. " +
            "The predictor parameters are broken into two types namely, requiring all parameters via API or requiring a lookup key via API and extracting parameters from a data source. Use this format for input prams only:" +
            "{'name': 'predict1', 'mojo': 1, 'dbparam': false, 'input': ['x','y'], 'value': ['val_x', 'val_y'], lookup: {'key': '', 'value': ''}}" +
            "Use this approach for inputs from data source:" +
            "{'name': 'predict1', 'mojo': 'model_mojo.zip', 'dbparam': true, lookup: {key: 'customer', value: 1234567890}} " +
            "If there is post-scoring logic, then ise this configuration:" +
            "{'name': 'predict1', 'mojo': '1', 'mab': {'class': 'mabone', 'epsilon': 0.4},'dbparam': true, lookup: {key: 'customer', value: 1234567890}, param: {key: 'value_field', value: 30}}" +
            "", summary = "Perform prediction on pre-loaded model with detail.")
    @RequestMapping(value = "/predictorResponsePreLoad", method = RequestMethod.GET)
    @ResponseStatus(HttpStatus.OK)
    public String predictorResponsePreLoad(
            @RequestHeader Map<String, String> headers,
            @RequestParam(name = "value",
                    defaultValue = "{'name': 'predict1', 'mojo': '1..16', 'dbparam': false, 'input': ['x','y'], 'value': ['val_x', 'val_y'], 'x': 1} " +
                            "OR {'name': 'predict1', 'mojo': '1','dbparam': true, lookup: {key: 'customer',value: '1234567890'}} + " +
                            "OR {'name': 'predict1', 'mojo': '1','mab': {'class': 'mabone', 'epsilon': 0.4},'dbparam': true, lookup: {key: 'customer',value: 1234567890}, param: {key: 'value_field', value: 30}, resultcount: 3}") String valueJSON,
            @RequestParam(name = "detail",
                    defaultValue = "all") String detail) throws Exception {
        LOGGER.info("/predictorResponsePreLoad params: " + valueJSON);
        String uuid = UUID.randomUUID().toString();
        JSONObject params = new JSONObject(JSONDecode.decode(valueJSON));
        params.put("uuid", uuid);
        return ecosystemMaster.getPredictionResult(mongoClient, params).toString();
    }
 
    /**
     * Update responses based on predictions.
     *
     * @param documentJSON documentJSON
     * @return Result
     */
    @Operation(description = "Update response based on recommendation accepted (Async): " +
            "{\"uuid\": \"dcb54a23-0737-4768-845d-48162598c0f7\", \"offers_accepted\": [{\"offer_name\": \"OFFER_A\"}], \"channel_name\": \"app\"}" +
            "", summary = "Update response based on predictions accepted")
    @RequestMapping(value = "/response", method = RequestMethod.POST)
    public String processResponse(@RequestHeader Map<String, String> headers,
                                  @RequestBody String documentJSON) throws Exception {
        LOGGER.info("/response POST API");
        String response = "Success";
 
        try {
            ecosystemResponse.putResponseReturnDetailAsync(JSONDecode.decode(documentJSON));
        } catch (Exception e) {
            e.printStackTrace();
            JSONObject error = new JSONObject().put("ErrorMessage", e.getMessage());
            response = error.toString();
        }
 
        return "{\"message\": \"" + response + "\"}";
    }
 
    /**
     * Business logic service.
     *
     * @param params JSONObject with params
     * @return Result
     */
    @Operation(description = "Access the business logic or other calculations." +
            "", summary = "Business logic")
    @RequestMapping(value = "/business", method = RequestMethod.POST)
    public String processBusiness(@RequestHeader Map<String, String> headers,
                                  @RequestBody String params) throws Exception {
        LOGGER.info("/business POST API");
        String response = "Success";
 
        try {
            JSONObject paramsObj = new JSONObject(params);
 
            return BusinessLogic.getValues(paramsObj).toString();
 
        } catch (Exception e) {
            e.printStackTrace();
            JSONObject error = new JSONObject().put("ErrorMessage", e.getMessage());
            response = error.toString();
            return "{\"ErrorMessage\": \"" + response + "\"}";
        }
 
    }
 
 
    /**
     * Update responses based on predictions.
     *
     * @param documentJSON documentJSON
     * @return Result
     */
    @Operation(description = "Update response based on recommendation accepted and return valid response: " +
            "{\"uuid\": \"dcb54a23-0737-4768-845d-48162598c0f7\", \"offers_accepted\": [{\"offer_name\": \"OFFER_A\"}], \"channel_name\": \"app\"}" +
            "", summary = "Update response based on predictions accepted")
    @RequestMapping(value = "/response_result", method = RequestMethod.POST)
    public String processResponseResult(@RequestHeader Map<String, String> headers,
                                        @RequestBody String documentJSON) throws Exception {
        LOGGER.info("/response_result POST API");
        String response = "Error";
 
        try {
            JSONObject responseObj = ecosystemResponse.putResponseReturnDetail(JSONDecode.decode(documentJSON));
            if (responseObj.has("uuid"))
                response = responseObj.getString("uuid");
            else
                response = "Error: UUID not found.";
        } catch (Exception e) {
            e.printStackTrace();
            JSONObject error = new JSONObject().put("ErrorMessage", "Validate that uuid is available in log. " + e.getMessage());
            response = error.toString();
        }
        return "{\"message\": \"" + response + "\"}";
    }
 
    /**************************************************************************************************************/
 
 
    /**
     * Prediction case is determined from properties file setup: mojo's, feature store, and other settings.
     * <p>
     * Balance enquire Case:
     * From paramsParams - balance enquiry example: {msisdn:0828811817,in_balance:50,voice_balance:12,data_balance:400,n_offers:1}
     * <p>
     * Recharge Recommender Case:
     * {'name':'layalty_recommender', 'mojo':'1','mab':{'class':'mabone', 'epsilon':0.4},'dbparam':true, lookup:{key:'msisdn',value:849999330}, param:{key:'in_recharge', value:100}, resultcount:2}
     *
     * @param campaign     campaign
     * @param subcampaign  subcampaign
     * @param customer     customer
     * @param channel      channel
     * @param numberoffers numberoffers
     * @return Result
     */
    @Operation(summary = "Provide offers that form part of a campaign for a particular customer.")
    @RequestMapping(value = "/justforyou",  method = RequestMethod.GET)
    @ResponseStatus(HttpStatus.OK)
    public String justforyou(  @RequestHeader Map<String, String> headers,
                               @RequestParam(value = "msisdn") String customer,
                               @RequestParam(value = "payment_method") String paymentMethod,
                               @RequestParam(value = "campaign_id") String campaign,
                               @RequestParam(value = "sub_campaign_id", required = false) String subcampaign,
                               @RequestParam(value = "channel_name") String channel,
                               @RequestParam(value = "number_of_offers", required = false) int numberoffers,
                               @RequestParam(value = "user_id") String userid,
                               @RequestParam(value = "params", required = false) String jsonParams) throws Exception {
        LOGGER.info("/justforyou API");
 
        JSONObject paramsParams = new JSONObject();
 
        try {
            String in_params = URLDecoder.decode(jsonParams);
            if (in_params.startsWith("\"")) in_params = in_params.substring(1, in_params.length() - 1).replaceAll("\\\\", "");
            paramsParams = new JSONObject(in_params);
        } catch (org.json.JSONException e) {
            LOGGER.info("/justforyou malformed params JSON input: " + jsonParams);
            return paramsParams.put("ErrorMessage", e).toString();
        }
 
        JSONObject param = new JSONObject();
        String uuid = generateUUID();
        param.put("headers", headers);
        param.put("uuid", uuid);
 
        LOGGER.info("/justforyou:UUID: " + uuid + " predictor: " + campaign);
 
        param.put("name", campaign);
        param.put("customer", customer);
        param.put("campaign_id", campaign);
        param.put("subcampaign", subcampaign);
        param.put("channel", channel);
        param.put("subname", subcampaign);
        param.put("resultcount", numberoffers);
        param.put("userid", userid);
        param.put("api_payment_method", paymentMethod);
        /* use api_params key to store values in the params json object to allow for logging */
        JSONObject inParam = new JSONObject(param.toString());
        param.put("api_params", inParam);
 
        /** Set defaults for model and paramneters from database */
        param.put("in_params", paramsParams);
        if (paramsParams.has("input")) {
            param.put("input", paramsParams.getJSONArray("input"));
            param.put("value", paramsParams.getJSONArray("value"));
            param.put("lookup", new JSONObject().put("value", customer).put("key", "customer"));
            param.put("dbparam", false);
        } else {
            param.put("dbparam", true);
            param = ValidateParams.getLookupFromParams(settings, param, customer);
        }
 
        param.put("mojo", "1");
 
        /** Obtain default epsilon from properties or obtain from input params */
        if (!paramsParams.has("mab")) {
            JSONObject mabParam = new JSONObject();
            mabParam.put("class", "mabone");
            mabParam.put("epsilon", settings.getEpsilon());
            param.put("mab", mabParam);
        } else {
            param.put("mab", paramsParams.getJSONObject("mab"));
        }
 
        /** Primary prediction from EcosystemMaster.getPredictionResult */
        JSONObject predictResult = new JSONObject();
        predictResult = ecosystemMaster.getPredictionResult(mongoClient, param);
        if (param.has("in_params")) predictResult.put("in_params", param.getJSONObject("in_params"));
        if (predictResult.has("ErrorMessage")) {
            predictResult.put("error", 1);
        }
 
        /* TODO MAKE THIS CONFIGURABLE IN THE WORKBENCH */
        /* stage specific JSON result */
        JSONObject result = new JSONObject();
        result.put("cache", predictResult.get("cache"));
        result.put("request_date", predictResult.get("datetime"));
        result.put("explore",predictResult.get("explore"));
        result.put("msisdn", customer);
        result.put("campaign_id", campaign);
        result.put("session_id", param.get("uuid"));
        result.put("uuid", param.get("uuid"));
        result.put("in_params", param.get("in_params"));
        result.put("final_result", predictResult.getJSONArray("final_result"));
        if (param.has("payment_method_code"))
            result.put("payment_method",param.get("payment_method_code"));
        else
            result.put("payment_method",paymentMethod);
 
        return result.toString().intern();
    }
 
    /**
     * Confirm offers taken up by customers/msisdn.
     *
     * @param documentJSON documentJSON
     * @return Result
     */
    @Operation(summary = "Update offers taken up by customers. Supported response format: " +
            "{\"uuid\": \"dcb54a23-0737-4768-845d-48162598c0f7\", \"offers_accepted\": [{\"offer_treatment_code\": \"OFFER_A\"}], \"channel_name\": \"app\", \"transaction_id\": \"uuid:0aa9140a-755e-48de-84a2-0a67451804f7\"}")
    @RequestMapping(value = "/justforyou",  method = RequestMethod.PUT)
    public String justforyou(@RequestHeader Map<String, String> headers,
                             @RequestParam(name = "document") String documentJSON) throws IOException, ParseException {
        LOGGER.info("/justforyou PUT API");
        String response = ecosystemResponse.putResponse(JSONDecode.decode(documentJSON));
        if (response == null)
            LOGGER.error("/justforyou PUT API input document: " + documentJSON);
        else
            LOGGER.debug("/justforyou PUT API response: " + response);
        return response;
    }
}